Sei nel menu dedicato all'energia, la mobilità sostenibile, le smart city, i big data, le reti di imprese, le tecnologie ICT per l'interoperabilità e per la progettazione.
Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed trans esterification.
Autori
De Gisi S., Galasso M., De Feo G.
Anno 2013
Tipologia
Articolo Rivista internazionale con referaggio
Abstract
The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzedtransesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.
Referenza_Bibliografica
De Gisi S., Galasso M., De Feo G. (2013) Environmental Technology, Volume 34, Issue 7, pages 861-870.